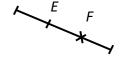

02-02 Les segments

Définitions


Un **segment** est un ensemble de points alignés, avec un début et une fin. On ne dira pas qu'un point est sur un segment mais plutôt qu'il lui **appartient**. Les points situés au début et à la fin du segment sont ses **extrémités**.

Remarques

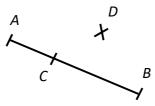
- Un segment est constitué d'un nombre infini de, même un petit segment.
- Les deux petits traits dessinés aux du segment symbolisent son début et sa fin.
- Pour coder qu'un point appartient à un segment, on le représente par un trait.

Le codage du dessin ci-contre indique que le point appartient au segment.

Le codage ne permet pas d'affirmer que le point appartient au segment.

Notations

Le segment d'extrémités A et B se note [AB]Le symbole d'appartenance est \in Le symbole de non-appartenance est \notin


Exemples

Soient les points A, B, C et D représentés ci-contre.

On a:

D [AB]

A [BC]

Remarques

- Le segment [AB] se nomme également
- Ne pas oublier les crochets : la notation AB sans crochets désigne la entre A et B.

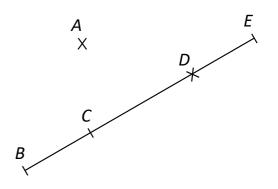
02-02 Applications du cours

Application 1

Soient les points *A*, *B*, *C*, *D*, *E* et *F* représentés ci-contre. On sait que les points *B*, *C* et *F* sont alignés.

Compléter les expressions suivantes avec \in ou \notin :

E [*BC*]


A [BE]

B [CF] X

D [CE]

B [BF]

C [BD]

Application 2

- 1. Placer huit points de telle sorte que l'on n'ait aucun alignement de trois points.
- 2. Combien de segments au total peut-on tracer ayant pour extrémités ces huit points ?
- 3. Quelle aurait été la réponse à la question 2. si l'on avait pris cent points ?

Application 3

On appelle « ligne continue » une ligne dessinée sans lever le crayon. \times \times \times Dessiner une ligne continue constituée de 4 segments passant par ces 9 points :

 \times \times \times

 \times \times \times